Преобразование выражений с использованием свойств логарифмов: примеры, решения. Преобразование логарифмических выражений Преобразование логарифмических выражений примеры с решением

ЕГОРОВА ВИКТОРИЯ ВАЛЕРЬЕВНА

Учитель математики

высшей квалификационной категории

ТЕМА: «ТОЖДЕСТВЕННОЕ ПРЕОБРАЗОВАНИЕ

ЛОГАРИФМИЧЕСКИХ ВЫРАЖЕНИЙ»

Знания и навыки, которыми должны овладеть учащиеся после изучения данного урока:

    знать определение логарифма числа, основное логарифмическое тождество, свойства логарифмов;

    уметь выполнять преобразования выражений, содержащих логарифмы, вычислять логарифмы.

Литература:

1. Алимов Ш.А., Колягин Ю.М., Сидоров Ю.В. и др. Алгебра и начала анализа: учебник для 10-11 классов общеобразовательных учреждений. – М.: Просвещение, 2001.

2. Кочагин В.В., Кочагина М.В., Интенсивный курс подготовки к ЕГЭ. – М.:Эксмо, 2009.

3. Мерзляк А.Г., Полонский В.Б., Якир М.С., Алгебраический тренажер: Пособие для школьников и абитуриентов. – М.:Илекса, 2005.

4. Гусев В.А., Мордкович А.Г. Математика: Справочные материалы: Книга для учащихся. – М.: Просвещение, 2001.

План урока:

Ход урока:

1) Логарифм – это греческое слово, которое состоит из 2-х слов: “логос”- отношение, “аритмос”- число. Значит, логарифм есть число, измеряющее отношение. В публикации тысяча шестьсот четырнадцатого года сообщалось, что Непер изобрёл логарифмы. Позже им были составлены логарифмические таблицы, которые теперь известны нам как таблицы Брадиса. Менее чем за одно столетие таблицы распространились по всему миру и сделались незаменимым вычислительным средством. В дальнейшем они были, как бы встроены в удобное устройство, чрезвычайно ускоряющее процесс вычисления – логарифмическую линейку, которой пользовались до семидесятых годов двадцатого века.

Приложение 1.

2) Логарифмом положительного числа b по основанию a , причём а больше нуля и не равно единицы, называется показатель степени, в которую нужно возвести число a , чтобы получить число b.

Это равенство, выражающее определение логарифма, называется основным логарифмическим тождеством .

Ц

ОР 1

П

Основание степени и основание логарифма семнадцать, значит по основному логарифмическому тождеству значение выражения равно трём.

Оработаем устно:

Щ
ЕЛЧОК

Одна вторая равна нуль целых пяти десятым, значит выражение равно арифметическому квадратному корню из пяти.

П

риложение 2.

Равенство означает, что

Из определения логарифма получаются следующие важные равенства:

Например:


П
риложение 3.

Перейдем к заданиям ЕГЭ:

Приложение 4.

3
) Для логарифма по основанию десять существует специальное обозначение и название десятичный логарифм .

Л
огарифм по основанию е называется натуральным логарифмом .

Н
апример,


4) Из определения логарифма вытекают следующие его свойства. Все свойства формулируются и доказываются только для положительных значений переменных, содержащихся под знаками логарифмов.

Логарифм произведения двух положительных чисел по основанию а равен сумме логарифмов этих чисел с тем же основанием.

ЦОР 2

Например,

З
адание 1.

Задание 2. Упростите выражение

В
оспользуемся решением предыдущего примера. Заменим

Обратите внимание на то, что логарифм в квадрате, поэтому и сумму необходимо возвести в квадрат. Применяя формулу квадрата суммы, раскроем скобки. Приведём подобные слагаемые.

5) Логарифм частного равен разности логарифмов делимого и делителя.

Ц

Обратите внимание на основание степени и основание логарифма – они одинаковы.

ОР 3

Р

ассмотрим применение этой формулы на примере:

З
адание 1.
Найдите значение выражения, если


Задание 2. Найдите значение b по его логарифму

6) Логарифм степени по основанию а , равен произведению показателя степени на логарифм по тому же основанию.

ЦОР 4

Например,




З
адание 1.
Вычислите, если

Упростим выражение

Формула

называется формулой перехода к новому основанию.

З

адание 1.
Выразить через логарифм с основанием 2.

Задание 2. Вычислите

ЦОР 5

ЦОР 6

Например,

З

адание 1.
Вычислите


З
адание 2.
Вычислите

9) К логарифмическим преобразованиям можно приступать, только в том случаи, если вы запомнили все свойства логарифмов. Повторив их, рассмотрим задания на преобразования логарифмических выражений с другой стороны.

Для преобразования суммы или разности логарифмических выражений иногда достаточно использовать определение логарифма, а чаще всего свойства логарифма произведения или частного.

З
адание 1.
Вычислите

Решим двумя способами.

1 способ, используя определение логарифма:

2 способ, опираясь на свойство логарифма частного:

Задание 2. Найдите значение выражения

Применим сначала формулу логарифма произведения, затем определение логарифма.

Основное логарифмическое тождество используется при преобразовании выражений, содержащих логарифм в показателе степени. Идея таких операций заключается в получении равных основания степени и основания логарифма.

Иногда необходимо преобразовывать выражение по свойствам логарифма и по свойствам степени, так же можно легко перейти от одного основания к другому, используя формулу перехода. В других случаях следует применять несколько свойств.

З
адание 3.
Вычислите

З
адание 4.
Найдите значение выражения

Задание 5. Найдите значение выражения

З
адание 6.
Представьте в виде разности логарифмов

Н
аибольшую трудность представляют преобразования логарифмических выражений, находящихся под радикалом. В процессе преобразований приходится рассматривать модули логарифмических выражений, для раскрытия которых требуется сравнить иррациональные числа или рациональное и иррациональное число. Будем действовать последовательно. Рассмотрим выражение, стоящее под внутренним радикалом.

Подставим в исходное выражение.

Следует отметить, что с преобразованием логарифмических выражений можно встретиться и при решении уравнений и неравенств или исследовании функций, поэтому в неявном виде они могут присутствовать и в заданиях групп В и С.

10) Подведение итогов.Вопросы:

    Логарифм по основанию 10 называется

    основным логарифмом

    главным логарифмом

    натуральным логарифмом

    десятичным логарифмом

2) Какие значения может принимать x в выражении

    Значение не определено

5) Укажите соотношение, которое верно для всех x ≠ 0 .

6) Укажите верное соотношение для формулы перехода к новому основанию.

7) Укажите верное равенство при

11) Контрольное тестирование.

В задаче B7 дается некоторое выражение, которое нужно упростить. В результате должно получиться обычное число, которое можно записать в бланке ответов. Все выражения условно делятся на три типа:

  1. Логарифмические,
  2. Показательные,
  3. Комбинированные.

Показательные и логарифмические выражения в чистом виде практически не встречаются. Однако знать, как они вычисляются, совершенно необходимо.

В целом, задача B7 решается достаточно просто и вполне под силу среднему выпускнику. Отсутствие четких алгоритмов компенсируется в ней стандартностью и однообразностью. Научиться решать такие задачи можно просто за счет большого количества тренировок.

Логарифмические выражения

Подавляющее большинство задач B7 содержат логарифмы в том или ином виде. Эта тема традиционно считается сложной, поскольку ее изучение приходится, как правило, на 11 класс — эпоху массовой подготовки к выпускным экзаменам. В результате многие выпускники имеют весьма смутное представление о логарифмах.

Но в этой задаче никто и не требует глубоких теоретических познаний. Нам будут встречаться лишь самые простые выражения, которые требуют незамысловатых рассуждений и вполне могут быть освоены самостоятельно. Ниже приведены основные формулы, которые надо знать, чтобы справиться с логарифмами:

Кроме того, надо уметь заменять корни и дроби на степени с рациональным показателем, иначе в некоторых выражениях выносить из под знака логарифма будет просто нечего. Формулы замены:

Задача. Найти значения выражений:
log 6 270 − log 6 7,5
log 5 775 − log 5 6,2

Первые два выражения преобразуются как разность логарифмов:
log 6 270 − log 6 7,5 = log 6 (270: 7,5) = log 6 36 = 2;
log 5 775 − log 5 6,2 = log 5 (775: 6,2) = log 5 125 = 3.

Для вычисления третьего выражения придется выделять степени — как в основании, так и в аргументе. Для начала найдем внутренний логарифм:

Затем — внешний:

Конструкции вида log a log b x многим кажутся сложными и непонятыми. А между тем, это всего лишь логарифм от логарифма, т.е. log a (log b x ). Сначала вычисляется внутренний логарифм (положим log b x = c ), а затем внешний: log a c .

Показательные выражения

Будем называть показательным выражением любую конструкцию вида a k , где числа a и k — произвольные постоянные, причем a > 0. Методы работы с такими выражениями достаточно просты и рассматриваются на уроках алгебры 8-го класса.

Ниже приведены основные формулы, которые обязательно надо знать. Применение этих формул на практике, как правило, не вызывает проблем.

  1. a n · a m = a n + m ;
  2. a n / a m = a n − m ;
  3. (a n ) m = a n · m ;
  4. (a · b ) n = a n · b n ;
  5. (a : b ) n = a n : b n .

Если встретилось сложное выражение со степенями, и не понятно, как к нему подступиться, используют универсальный прием — разложение на простые множители. В результате большие числа в основаниях степеней заменяются простыми и понятными элементами. Затем останется лишь применить указанные выше формулы — и задача будет решена.

Задача. Найти значения выражений: 7 9 · 3 11: 21 8 , 24 7: 3 6: 16 5 , 30 6: 6 5: 25 2 .

Решение. Разложим все основания степеней на простые множители:
7 9 · 3 11: 21 8 = 7 9 · 3 11: (7 · 3) 8 = 7 9 · 3 11: (7 8 · 3 8) = 7 9 · 3 11: 7 8: 3 8 = 7 · 3 3 = 189.
24 7: 3 6: 16 5 = (3 · 2 3) 7: 3 6: (2 4) 5 = 3 7 · 2 21: 3 6: 2 20 = 3 · 2 = 6.
30 6: 6 5: 25 2 = (5 · 3 · 2) 6: (3 · 2) 5: (5 2) 2 = 5 6 · 3 6 · 2 6: 3 5: 2 5: 5 4 = 5 2 · 3 · 2 = 150.

Комбинированные задачи

Если знать формулы, то все показательные и логарифмические выражения решаются буквально в одну строчку. Однако в задаче B7 степени и логарифмы могут объединяться, образуя довольно неслабые комбинации.


Перечисленные равенства при преобразовании выражений с логарифмами используются как справа налево, так и слева направо.

Стоит заметить, что запоминать следствия из свойств необязательно: при проведении преобразований можно обойтись основными свойствами логарифмов и другими фактами (например, тем, что при b≥0), из которых соответствующие следствия вытекают. «Побочный эффект» такого подхода проявляется лишь в том, что решение будет немного длиннее. К примеру, чтобы обойтись без следствия, которое выражается формулой , а отталкиваться лишь от основных свойств логарифмов, придется провести цепочку преобразований следующего вида: .

То же самое можно сказать и про последнее свойство из приведенного выше списка, которому отвечает формула , так как оно тоже следует из основных свойств логарифмов. Главное понимать, что всегда имеется возможность у степени положительного числа с логарифмом в показателе поменять местами основание степени и число под знаком логарифма. Справедливости ради, заметим, что примеры, подразумевающие осуществление преобразований подобного рода, на практике встречаются редко. Несколько примеров мы приведем ниже по тексту.

Преобразование числовых выражений с логарифмами

Свойства логарифмов вспомнили, теперь пора учиться применять их на практике для преобразования выражений. Естественно начать с преобразования числовых выражений, а не выражений с переменными, так как на них удобнее и проще познавать азы. Так мы и сделаем, причем начнем с очень простых примеров, чтобы научиться выбирать нужное свойство логарифма, но постепенно будем усложнять примеры, вплоть до момента, когда для получения конечного результата нужно будет применять несколько свойств подряд.

Выбор нужного свойства логарифмов

Свойств логарифмов не так мало, и понятно, что нужно уметь выбрать из них подходящее, которое в данном конкретном случае приведет к требуемому результату. Обычно это сделать нетрудно, сопоставив вид преобразуемого логарифма или выражения с видами левых и правых частей формул, выражающих свойства логарифмов. Если левая или правая часть одной из формул совпадает с заданным логарифмом или выражением, то, скорее всего, именно это свойство и надо применять при преобразовании. Следующие примеры это наглядно демонстрируют.

Начнем с примеров преобразования выражений с использованием определения логарифма, которому отвечает формула a log a b =b , a>0 , a≠1 , b>0 .

Пример.

Вычислите, если это возможно: а) 5 log 5 4 , б) 10 lg(1+2·π) , в) , г) 2 log 2 (−7) , д) .

Решение.

В примере под буквой а) явно видна структура a log a b , где a=5 , b=4 . Эти числа удовлетворяют условиям a>0 , a≠1 , b>0 , поэтому можно безбоязненно воспользоваться равенством a log a b =b . Имеем 5 log 5 4=4 .

б) Здесь a=10 , b=1+2·π , условия a>0 , a≠1 , b>0 выполнены. При этом имеет место равенство 10 lg(1+2·π) =1+2·π .

в) И в этом примере мы имеем дело со степенью вида a log a b , где и b=ln15 . Так .

Несмотря на принадлежность к тому же виду a log a b (здесь a=2 , b=−7 ), выражение под буквой г) нельзя преобразовать по формуле a log a b =b . Причина в том, что оно не имеет смысла, так как содержит отрицательное число под знаком логарифма. Более того, число b=−7 не удовлетворяет условию b>0 , что не дает возможности прибегнуть к формуле a log a b =b , так как она требует выполнения условий a>0 , a≠1 , b>0 . Итак, нельзя говорить о вычислении значения 2 log 2 (−7) . В этом случае запись 2 log 2 (−7) =−7 будет ошибкой.

Аналогично и в примере под буквой д) нельзя привести решение вида , так как исходное выражение не имеет смысла.

Ответ:

а) 5 log 5 4 =4 , б) 10 lg(1+2·π) =1+2·π , в) , г), д) выражения не имеют смысла.

Часто бывает полезно преобразование, при котором положительное число представляется в виде степени какого-то положительного и отличного от единицы числа с логарифмом в показателе. В его основе лежит то же определение логарифма a log a b =b , a>0 , a≠1 , b>0 , но формула применяется справа налево, то есть, в виде b=a log a b . Например, 3=e ln3 или 5=5 log 5 5 .

Переходим к применению свойств логарифмов для преобразования выражений.

Пример.

Найдите значение выражения: а) log −2 1 , б) log 1 1 , в) log 0 1 , г) log 7 1 , д) ln1 , е) lg1 , ж) log 3,75 1 , з) log 5·π 7 1 .

Решение.

В примерах под буквами a), б) и в) даны выражения log −2 1 , log 1 1 , log 0 1 , которые не имеет смысла, так как в основании логарифма не должно находиться отрицательное число, нуль или единица, ведь мы определили логарифм лишь для положительного и отличного от единицы основания. Поэтому, в примерах а) - в) не может быть и речи о нахождении значения выражения.

Во всех остальных заданиях, очевидно, в основаниях логарифмов находятся положительные и отличные от единицы числа 7 , e , 10 , 3,75 и 5·π 7 соответственно, а под знаками логарифмов всюду стоят единицы. А нам известно свойство логарифма единицы: log a 1=0 для любого a>0 , a≠1 . Таким образом, значения выражений б) – е) равны нулю.

Ответ:

а), б), в) выражения не имеют смысла, г) log 7 1=0 , д) ln1=0 , е) lg1=0 , ж) log 3,75 1=0 , з) log 5·e 7 1=0 .

Пример.

Вычислить: а) , б) lne , в) lg10 , г) log 5·π 3 −2 (5·π 3 −2) , д) log −3 (−3) , е) log 1 1 .

Решение.

Понятно, что нам предстоит воспользоваться свойством логарифма основания, которому отвечает формула log a a=1 при a>0 , a≠1 . Действительно, в заданиях под всеми буквами число под знаком логарифма совпадает с его основанием. Таким образом, хочется сразу сказать, что значение каждого из заданных выражений есть 1 . Однако не стоит торопиться с выводами: в заданиях под буквами а) – г) значения выражений действительно равны единице, а в заданиях д) и е) исходные выражения не имеют смысла, поэтому нельзя сказать, что значения этих выражений равны 1 .

Ответ:

а) , б) lne=1 , в) lg10=1 , г) log 5·π 3 −2 (5·π 3 −2)=1 , д), е) выражения не имеют смысла.

Пример.

Найти значение: а) log 3 3 11 , б) , в) , г) log −10 (−10) 6 .

Решение.

Очевидно, под знаками логарифмов стоят некоторые степени основания. Исходя из этого, понимаем, что здесь нам пригодится свойство степени основания: log a a p =p , где a>0 , a≠1 и p – любое действительное число. Учитывая это, имеем следующие результаты: а) log 3 3 11 =11 , б) , в) . А можно ли записать аналогичное равенство для примера под буквой г) вида log −10 (−10) 6 =6 ? Нет, нельзя, так как выражение log −10 (−10) 6 не имеет смысла.

Ответ:

а) log 3 3 11 =11 , б) , в) , г) выражение не имеет смысла.

Пример.

Представьте выражение в виде суммы или разности логарифмов по тому же основанию: а) , б) , в) lg((−5)·(−12)) .

Решение.

а) Под знаком логарифма находится произведение, а нам известно свойство логарифма произведения log a (x·y)=log a x+log a y , a>0 , a≠1 , x>0 , y>0 . В нашем случае число в основании логарифма и числа в произведении являются положительными, то есть, удовлетворяют условиям выбранного свойства, поэтому, мы его можем спокойно применять: .

б) Здесь воспользуемся свойством логарифма частного , где a>0 , a≠1 , x>0 , y>0 . В нашем случае основание логарифма есть положительное число e , числитель и знаменатель π положительны, значит, удовлетворяют условиям свойства, поэтому мы имеем право на применение выбранной формулы: .

в) Во-первых, заметим, что выражение lg((−5)·(−12)) имеет смысл. Но при этом для него мы не имеем права применять формулу логарифма произведения log a (x·y)=log a x+log a y , a>0 , a≠1 , x>0 , y>0 , так как числа −5 и −12 – отрицательные и не удовлетворяют условиям x>0 , y>0 . То есть, нельзя провести такое преобразование: lg((−5)·(−12))=lg(−5)+lg(−12) . А что же делать? В подобных случаях исходное выражение нуждается в предварительном преобразовании, позволяющем уйти от отрицательных чисел. Про подобные случаи преобразования выражений с отрицательными числами под знаком логарифма мы подробно поговорим в одном из , а пока приведем решение этого примера, которое понятно наперед и без объяснений: lg((−5)·(−12))=lg(5·12)=lg5+lg12 .

Ответ:

а) , б) , в) lg((−5)·(−12))=lg5+lg12 .

Пример.

Упростить выражение: а) log 3 0,25+log 3 16+log 3 0,5 , б) .

Решение.

Здесь нам помогут все те же свойства логарифма произведения и логарифма частного, которые мы использовали в предыдущих примерах, только сейчас мы будем их применять справа налево. То есть, сумму логарифмов преобразуем в логарифм произведения, а разность логарифмов – в логарифм частного. Имеем
а) log 3 0,25+log 3 16+log 3 0,5=log 3 (0,25·16·0,5)=log 3 2 .
б) .

Ответ:

а) log 3 0,25+log 3 16+log 3 0,5=log 3 2 , б) .

Пример.

Избавьтесь от степени под знаком логарифма: а) log 0,7 5 11 , б) , в) log 3 (−5) 6 .

Решение.

Несложно заметить, что мы имеем дело с выражениями вида log a b p . Соответствующее свойство логарифма имеет вид log a b p =p·log a b , где a>0 , a≠1 , b>0 , p - любое действительное число. То есть, при выполнении условий a>0 , a≠1 , b>0 от логарифма степени log a b p мы можем переходить к произведению p·log a b . Проведем это преобразование с заданными выражениями.

а) В этом случае a=0,7 , b=5 и p=11 . Так log 0,7 5 11 =11·log 0,7 5 .

б) Здесь , условия a>0 , a≠1 , b>0 выполняются. Поэтому

в) Выражение log 3 (−5) 6 имеет ту же структуру log a b p , a=3 , b=−5 , p=6 . Но для b не выполняется условие b>0 , что делает невозможным применение формулы log a b p =p·log a b . Так что же, нельзя справиться с поставленной задачей? Можно, но требуется предварительное преобразование выражения, о котором мы подробно поговорим ниже в пункте под заголовком . Решение будет таким: log 3 (−5) 6 =log 3 5 6 =6·log 3 5 .

Ответ:

а) log 0,7 5 11 =11·log 0,7 5 ,
б)
в) log 3 (−5) 6 =6·log 3 5 .

Довольно часто формулу логарифма степени при проведении преобразований приходится применять справа налево в виде p·log a b=log a b p (при этом требуется выполнение тех же условий для a , b и p ). Например, 3·ln5=ln5 3 и lg2·log 2 3=log 2 3 lg2 .

Пример.

а) Вычислите значение log 2 5 , если из известно, что lg2≈0,3010 и lg5≈0,6990 . б) Представьте дробь в виде логарифма по основанию 3 .

Решение.

а) Формула перехода к новому основанию логарифма позволяет данный логарифм представить в виде отношения десятичных логарифмов, значения которых нам известны: . Остается лишь провести вычисления, имеем .

б) Здесь достаточно воспользоваться формулой перехода к новому основанию, причем применить ее справа налево, то есть, в виде . Получаем .

Ответ:

а) log 2 5≈2,3223 , б) .

На этом этапе мы достаточно скрупулезно рассмотрели преобразование самых простых выражений с использованием основных свойств логарифмов и определения логарифма. В этих примерах нам приходилось применять какое-то одно свойство и ничего более. Теперь со спокойной совестью можно переходить к примерам, преобразование которых требует использования нескольких свойств логарифмов и других дополнительных преобразований. Ими мы и займемся в следующем пункте. Но перед этим еще вкратце остановимся на примерах применения следствий из основных свойств логарифмов.

Пример.

а) Избавьтесь от корня под знаком логарифма . б) Преобразуйте дробь в логарифм по основанию 5 . в) Освободитесь от степеней под знаком логарифма и в его основании . г) Вычислите значение выражения . д) Замените выражение степенью с основанием 3 .

Решение.

а) Если вспомнить про следствие из свойства логарифма степени , то можно сразу давать ответ: .

б) Здесь воспользуемся формулой справа налево, имеем .

в) В данном случае к результату приводит формула . Получаем .

г) А здесь достаточно применить следствие, которому отвечает формула . Так .

д) Свойство логарифма позволяет нам достичь нужного результата: .

Ответ:

а) . б) . в) . г) . д) .

Последовательное применение нескольких свойств

Реальные задания на преобразование выражений с использованием свойств логарифмов обычно сложнее тех, которыми мы занимались в предыдущем пункте. В них, как правило, результат получается не в один шаг, а решение уже состоит в последовательном применении одного свойства за другим вместе с дополнительными тождественными преобразованиями , такими как раскрытие скобок, приведение подобных слагаемых, сокращении дробей и т.п. Так давайте подбираться ближе к таким примерам. Сложного в этом ничего нет, главное действовать аккуратно и последовательно, соблюдая порядок выполнения действий .

Пример.

Вычислить значение выражения (log 3 15−log 3 5)·7 log 7 5 .

Решение.

Разность логарифмов в скобках по свойству логарифма частного можно заменить логарифмом log 3 (15:5) , и дальше вычислить его значение log 3 (15:5)=log 3 3=1 . А значение выражения 7 log 7 5 по определению логарифма равно 5 . Подставим эти результаты в исходное выражение, получаем (log 3 15−log 3 5)·7 log 7 5 =1·5=5 .

Приведем вариант решения без пояснений:
(log 3 15−log 3 5)·7 log 7 5 =log 3 (15:5)·5=
=log 3 3·5=1·5=5 .

Ответ:

(log 3 15−log 3 5)·7 log 7 5 =5 .

Пример.

Чему равно значение числового выражения log 3 log 2 2 3 −1 ?

Решение.

Преобразуем сначала логарифм, находящийся под знаком логарифма, по формуле логарифма степени: log 2 2 3 =3 . Таким образом, log 3 log 2 2 3 =log 3 3 и дальше log 3 3=1 . Так log 3 log 2 2 3 −1=1−1=0 .

Ответ:

log 3 log 2 2 3 −1=0 .

Пример.

Упростить выражение .

Решение.

Формула перехода к новому основанию логарифма позволяет отношение логарифмов по одному основанию представить как log 3 5 . При этом исходное выражение примет вид . По определению логарифма 3 log 3 5 =5 , то есть , а значение полученного выражения в силу того же определения логарифма равно двум.

Вот краткий вариант решения, который обычно и приводится: .

Ответ:

.

Для плавного перехода к информации следующего пункта давайте взглянем на выражения 5 2+log 5 3 , и lg0,01 . Их структура не подходит ни под одно из свойств логарифмов. Так что же получается, их нельзя преобразовать с использованием свойств логарифмов? Можно, если провести предварительные преобразования, подготавливающие данные выражения к применению свойств логарифмов. Так 5 2+log 5 3 =5 2 ·5 log 5 3 =25·3=75 , и lg0,01=lg10 −2 =−2 . Дальше мы подробно разберемся, как осуществляется подобная подготовка выражений.

Подготовка выражений к применению свойств логарифмов

Логарифмы в составе преобразуемого выражения очень часто по структуре записи отличаются от левых и правых частей формул, отвечающих свойствам логарифмов. Но не менее часто преобразование этих выражений подразумевает использование свойств логарифмов: для их использования лишь требуется предварительная подготовка. А заключается эта подготовка в проведении определенных тождественных преобразований, приводящих логарифмы к виду, удобному для применения свойств.

Справедливости ради, заметим, что в качестве предварительных преобразований могут выступать практически любые преобразования выражений, от банального приведения подобных слагаемых до применения тригонометрических формул. Это и понятно, так как преобразуемые выражения могут содержать какие угодно математические объекты: скобки, модули, дроби, корни, степени и т.д. Таким образом, нужно быть готовым выполнить любое требующееся преобразование, чтобы дальше получить возможность воспользоваться свойствами логарифмов.

Сразу скажем, что в этом пункте мы не ставим перед собой задачу классифицировать и разобрать все мыслимые предварительные преобразования, позволяющие в дальнейшем применить свойства логарифмов или определение логарифма. Здесь мы остановимся лишь на четырех из них, которые наиболее характерны и наиболее часто встречаются на практике.

А теперь подробно о каждом из них, после чего в рамках нашей темы останется лишь разобраться с преобразованием выражений с переменными под знаками логарифмов.

Выделение степеней под знаком логарифма и в его основании

Начнем сразу с примера. Пусть перед нами логарифм . Очевидно, в таком виде его структура не располагает к применению свойств логарифмов. А можно ли как-нибудь преобразовать данное выражение, чтобы упростить его, а еще лучше вычислить его значение? Для ответа на этот вопрос давайте внимательно поглядим на числа 81 и 1/9 в контексте нашего примера. Здесь несложно заметить, что эти числа допускают представление в виде степени числа 3 , действительно, 81=3 4 и 1/9=3 −2 . При этом исходный логарифм представляется в виде и появляется возможность применения формулы . Итак, .

Анализ разобранного примера рождает следующую мысль: при возможности можно попробовать выделить степень под знаком логарифма и в его основании, чтобы применить свойство логарифма степени или его следствия. Остается только выяснить, как эти степени выделять. Дадим некоторые рекомендации по этому вопросу.

Иногда довольно очевидно, что число под знаком логарифма и/или в его основании представляет собой некоторую целую степень, как в рассмотренном выше примере. Практически постоянно приходится иметь дело со степенями двойки, которые хорошо примелькались: 4=2 2 , 8=2 3 , 16=2 4 , 32=2 5 , 64=2 6 , 128=2 7 , 256=2 8 , 512=2 9 , 1024=2 10 . Это же можно сказать и про степени тройки: 9=3 2 , 27=3 3 , 81=3 4 , 243=3 5 , … Вообще, не помешает, если перед глазами будет находиться таблица степеней натуральных чисел в пределах десятка. Также не составляет труда работать с целыми степенями десяти, ста, тысячи и т.д.

Пример.

Вычислить значение или упростить выражение: а) log 6 216 , б) , в) log 0,000001 0,001 .

Решение.

а) Очевидно, что 216=6 3 , поэтому log 6 216=log 6 6 3 =3 .

б) Таблица степеней натуральных чисел позволяет представить числа 343 и 1/243 в виде степеней 7 3 и 3 −4 соответственно. Поэтому возможно следующее преобразование заданного логарифма:

в) Так как 0,000001=10 −6 и 0,001=10 −3 , то log 0,000001 0,001=log 10 −6 10 −3 =(−3)/(−6)=1/2 .

Ответ:

а) log 6 216=3 , б) , в) log 0,000001 0,001=1/2 .

В более сложных случаях для выделения степеней чисел приходится прибегать к .

Пример.

Преобразуйте выражение к более простому виду log 3 648·log 2 3 .

Решение.

Давайте посмотрим, что представляет собой разложение числа 648 на простые множители:

То есть, 648=2 3 ·3 4 . Таким образом, log 3 648·log 2 3=log 3 (2 3 ·3 4)·log 2 3 .

Теперь логарифм произведения преобразуем в сумму логарифмов, после чего применим свойства логарифма степени:
log 3 (2 3 ·3 4)·log 2 3=(log 3 2 3 +log 3 3 4)·log 2 3=
=(3·log 3 2+4)·log 2 3 .

В силу следствия из свойства логарифма степени, которому отвечает формула , произведение log32·log23 представляет собой произведение , а оно, как известно, равно единице. Учитывая это, получаем 3·log 3 2·log 2 3+4·log 2 3=3·1+4·log 2 3=3+4·log 2 3 .

Ответ:

log 3 648·log 2 3=3+4·log 2 3 .

Довольно часто выражения под знаком логарифма и в его основании представляют собой произведения или отношения корней и/или степеней некоторых чисел, например, , . Подобные выражения можно представить в виде степени. Для этого осуществляется переход от корней к степеням , и применяются и . Указанные преобразования позволяют выделить степени под знаком логарифма и в его основании, после чего применить свойства логарифмов.

Пример.

Вычислите: а) , б) .

Решение.

а) Выражение в основании логарифма есть произведение степеней с одинаковыми основаниями, по соответствующему свойству степеней имеем 5 2 ·5 −0,5 ·5 −1 =5 2−0,5−1 =5 0,5 .

Теперь преобразуем дробь под знаком логарифма: перейдем от корня к степени, после чего воспользуемся свойством отношения степеней с одинаковыми основаниями: .

Остается подставить полученные результаты в исходное выражение, воспользоваться формулой и закончить преобразования:

б) Так как 729=3 6 , а 1/9=3 −2 , то исходное выражение можно переписать в виде .

Дальше применяем свойство корня из степени, осуществляем переход от корня к степени и используем свойство отношения степеней, чтобы преобразовать основание логарифма в степень: .

Учитывая последний результат, имеем .

Ответ:

а) , б) .

Понятно, что в общем случае для получения степеней под знаком логарифма и в его основании могут требоваться различные преобразования различных выражений. Приведем пару примеров.

Пример.

Чему равно значение выражения: а) , б) .

Решение.

Дальше отмечаем, что заданное выражение имеет вид log A B p , где A=2 , B=x+1 и p=4 . Числовые выражения подобного вида мы преобразовывали по свойству логарифма степени log a b p =p·log a b , поэтому, с заданным выражением хочется поступить аналогично, и от log 2 (x+1) 4 перейти к 4·log 2 (x+1) . А теперь давайте вычислим значение исходного выражения и выражения, полученного после преобразования, например, при x=−2 . Имеем log 2 (−2+1) 4 =log 2 1=0 , а 4·log 2 (−2+1)=4·log 2 (−1) - не имеющее смысла выражение. Это вызывает закономерный вопрос: «Что мы сделали не так»?

А причина в следующем: мы выполнили преобразование log 2 (x+1) 4 =4·log 2 (x+1) , опираясь на формулу log a b p =p·log a b , но данную формулу мы имеем право применять лишь при выполнении условий a>0 , a≠1 , b>0 , p - любое действительное число. То есть, проделанное нами преобразование имеет место, если x+1>0 , что то же самое x>−1 (для A и p – условия выполнены). Однако в нашем случае ОДЗ переменной x для исходного выражения состоит не только из промежутка x>−1 , но и из промежутка x<−1 . Но для x<−1 мы не имели права осуществлять преобразование по выбранной формуле.

Необходимость учета ОДЗ

Продолжим разбирать преобразование выбранного нами выражения log 2 (x+1) 4 , и сейчас посмотрим, что происходит с ОДЗ при переходе к выражению 4·log 2 (x+1) . В предыдущем пункте мы нашли ОДЗ исходного выражения – это есть множество (−∞, −1)∪(−1, +∞) . Теперь найдем область допустимых значений переменной x для выражения 4·log 2 (x+1) . Она определяется условием x+1>0 , которому отвечает множество (−1, +∞) . Очевидно, что при переходе от log 2 (x+1) 4 к 4·log 2 (x+1) происходит сужение области допустимых значений. А мы договорились избегать преобразований, приводящих к сужению ОДЗ, так как это может приводить к различным негативным последствиям.

Здесь для себя стоит отметить, что полезно контролировать ОДЗ на каждом шаге преобразования и не допускать ее сужения. И если вдруг на каком-то этапе преобразования произошло сужение ОДЗ, то стоит очень внимательно посмотреть, а допустимо ли данное преобразование и имели ли мы право его проводить.

Справедливости ради скажем, что на практике обычно приходится работать с выражениями, у которых ОДЗ переменных такова, что позволяет при проведении преобразований использовать свойства логарифмов без ограничений в уже известном нам виде, причем как слева направо, так и справа налево. К этому быстро привыкаешь, и начинаешь проводить преобразования механически, не задумываясь, а можно ли было их проводить. И в такие моменты, как назло, проскальзывают более сложные примеры, в которых неаккуратное применение свойств логарифмов приводит к ошибкам. Так что нужно всегда быть на чеку, и следить, чтобы не происходило сужения ОДЗ.

Не помешает отдельно выделить основные преобразования на базе свойств логарифмов, которые нужно проводить очень внимательно, которые могут приводить к сужению ОДЗ, и как следствие – к ошибкам:

Некоторые преобразования выражений по свойствам логарифмов могут приводить и к обратному - расширению ОДЗ. Например, переход от 4·log 2 (x+1) к log 2 (x+1) 4 расширяет ОДЗ с множества (−1, +∞) до (−∞, −1)∪(−1, +∞) . Такие преобразования имеют место, если оставаться в рамках ОДЗ для исходного выражения. Так только что упомянутое преобразование 4·log 2 (x+1)=log 2 (x+1) 4 имеет место на ОДЗ переменной x для исходного выражения 4·log 2 (x+1) , то есть, при x+1>0 , что то же самое (−1, +∞) .

Теперь, когда мы обговорили нюансы, на которые нужно обращать внимание при преобразовании выражений с переменными с использованием свойств логарифмов, остается разобраться, как правильно нужно эти преобразования проводить.

X+2>0 . Выполняется ли оно в нашем случае? Для ответа на этот вопрос взглянем на ОДЗ переменной x . Она определяется системой неравенств , которая равносильна условию x+2>0 (при необходимости смотрите статью решение систем неравенств ). Таким образом, мы можем спокойно применять свойство логарифма степени.

Имеем
3·lg(x+2) 7 −lg(x+2)−5·lg(x+2) 4 =
=3·7·lg(x+2)−lg(x+2)−5·4·lg(x+2)=
=21·lg(x+2)−lg(x+2)−20·lg(x+2)=
=(21−1−20)·lg(x+2)=0 .

Можно действовать и иначе, благо ОДЗ позволяет это делать, например так:

Ответ:

3·lg(x+2) 7 −lg(x+2)−5·lg(x+2) 4 =0 .

А что делать, когда на ОДЗ не выполняются условия, сопутствующие свойствам логарифмов? Будем разбираться с этим на примерах.

Пусть от нас требуется упростить выражение lg(x+2) 4 −lg(x+2) 2 . Преобразование этого выражения, в отличие от выражения из предыдущего примера, не допускает вольготного использования свойства логарифма степени. Почему? ОДЗ переменной x в данном случае представляет собой объединение двух промежутков x>−2 и x<−2 . При x>−2 мы можем спокойно применять свойство логарифма степени и действовать как в разобранном выше примере: lg(x+2) 4 −lg(x+2) 2 =4·lg(x+2)−2·lg(x+2)=2·lg(x+2) . Но ОДЗ содержит еще один промежуток x+2<0 , для которого последнее преобразование будет некорректно. Что же делать при x+2<0 ? В подобных случаях на помощь приходит . Определение модуля позволяет выражение x+2 при x+2<0 представить как −|x+2| . Тогда при x+2<0 от lg(x+2) 4 −lg(x+2) 2 переходим к lg(−|x+2|) 4 −lg(−|x+2|) 2 и дальше в силу свойств степени к lg|x+2| 4 −lg|x+2| 2 . Полученное выражение можно преобразовывать по свойству логарифма степени, так как |x+2|>0 при любых значениях переменной. Имеем lg|x+2| 4 −lg|x+2| 2 =4·lg|x+2|−2·lg|x+2|=2·lg|x+2| . Теперь можно освободиться от модуля, так как он свое дело сделал. Так как мы проводим преобразование при x+2<0 , то 2·lg|x+2|=2·lg(−(x+2)) . Итак, можно считать, что мы справились с поставленной задачей. Ответ: . Полученный результат можно записать компактно с использованием модуля как .

Рассмотрим еще один пример, чтобы работа с модулями стала привычной. Пусть мы задумали от выражения перейти к сумме и разности логарифмов линейных двучленов x−1 , x−2 и x−3 . Сначала находим ОДЗ:

На промежутке (3, +∞) значения выражений x−1 , x−2 и x−3 – положительные, поэтому мы спокойно можем применять свойства логарифма суммы и разности:

А на интервале (1, 2) значения выражения x−1 – положительные, а значения выражений x−2 и x−3 – отрицательные. Поэтому, на рассматриваемом интервале представляем x−2 и x−3 с использованием модуля как −|x−2| и −|x−3| соответственно. При этом

Теперь можно применять свойства логарифма произведения и частного, так как на рассматриваемом интервале (1, 2) значения выражений x−1 , |x−2| и |x−3| - положительные.

Имеем

Полученные результаты можно объединить:

Вообще, аналогичные рассуждения позволяют на базе формул логарифма произведения, отношения и степени получить три практически полезных результата, которыми довольно удобно пользоваться:

  • Логарифм произведения двух произвольных выражений X и Y вида log a (X·Y) можно заменить суммой логарифмов log a |X|+log a |Y| , a>0 , a≠1 .
  • Логарифм частного вида log a (X:Y) можно заменить разностью логарифмов log a |X|−log a |Y| , a>0 , a≠1 , X и Y – произвольные выражения.
  • От логарифма некоторого выражения B в четной степени p вида log a B p можно перейти к выражению p·log a |B| , где a>0 , a≠1 , p – четное число и B – произвольное выражение.

Аналогичные результаты приведены, например, в указаниях к решению показательных и логарифмических уравнений в сборнике задач по математике для поступающих в вузы под редакцией М. И. Сканави .

Пример.

Упростите выражение .

Решение.

Было бы хорошо применить свойства логарифма степени, суммы и разности. Но можем ли мы здесь это делать? Для ответа на этот вопрос нам требуется знать ОДЗ.

Определим ее:

Довольно очевидно, что выражения x+4 , x−2 и (x+4) 13 на области допустимых значений переменной x могут принимать как положительные, так и отрицательные значения. Поэтому нам придется действовать через модули.

Свойства модуля позволяют переписать как , поэтому

Также ничто не мешает воспользоваться свойством логарифма степени, после чего привести подобные слагаемые:

К такому же результату приводит и другая последовательность преобразований:

и так как на ОДЗ выражение x−2 может принимать как положительные, так и отрицательные значения, то при вынесении четного показателя степени 14

Математика. Тематические тесты. Часть II. Подготовка к ЕГЭ-2010. 10-11 классы. Под ред. Лысенко Ф.Ф. - Ростов н/Д.: Легион, 2009. - 176с.

Математика. ЕГЭ-2009. Тематические тесты. Ч.II (В4-В8, С1-С2) Под ред. Лысенко Ф.Ф. - Ростов н/ Д: Легион, 2008 - 160 с.

Пособие состоит из тестов по отдельным темам, которые являются традиционными в курсе математики и потому, как правило, входят в ЕГЭ. Они полностью охватывают группы заданий повышенного и высокого уровня сложности ЕГЭ, кроме текстовых задач и задач по геометрии. По каждой теме предлагается один или более комплектов тестов. В каждом комплекте по 10 тестов, в каждом тесте содержится 8 заданий.

Цель настоящей книги - отработать задания с кратким и развернутым ответом тестов ЕГЭ. Она необходима в первую очередь выпускникам, рассчитывающим получить на ЕГЭ хорошую оценку, а также учащимся 10-х классов, которые могут закрепить пройденные темы под углом зрения ЕГЭ. Предлагаемое пособие может быть полезно всем выпускникам, готовящимся к ЕГЭ по математике, а также педагогам, осуществляющим подготовку учащихся к ЕГЭ.

Формат: djvu / zip (2009 , 176с.)

Размер: 2,5 Мб

Скачать / Download файл 14

Формат: pdf (2009 , 176с.)

Размер: 8 ,6 Мб

Скачать: 14 .12.2018г, ссылки удалены по требованию изд-ва "Легион" (см. примечание)

Формат: djvu / zip (2008 , 160с.)

Размер: 3 Мб

Скачать / Download файл 14 .12.2018г, ссылки удалены по требованию изд-ва "Легион" (см. примечание)

Формат: pdf (2008 , 160с.)

Размер: 9 ,9 Мб

Скачать: 14 .12.2018г, ссылки удалены по требованию изд-ва "Легион" (см. примечание)

Учебно-методический комплекс "Математика. ЕГЭ-2010" под ред. Лысенко Ф.Ф. и Кулабухова С.Ю. включает учебные пособия:
1. Математика. Подготовка к ЕГЭ-2010.
2. Решебник. Математика. Подготовка к ЕГЭ-2010.
3. Математика. Тематические тесты. Часть I (базовый уровень). Подготовка к ЕГЭ-2010. 10-11 классы.
4. Математика. Тематические тесты. Часть II. Подготовка к ЕГЭ-2010. 10-11 классы.
5. Математика. Тематические тесты: геометрия, текстовые задачи. Подготовка к ЕГЭ-2010. 10-11 классы.
6. Математика. Сборник тестов ЕГЭ 2001 - 2010.
7. Математика. Подготовка к ЕГЭ-2010. Учебно-тренировочные тесты.
8. Карманный справочник по математике.

Оглавление
От авторов 11
§ 1. Тождественные преобразования логарифмических выражений 13
Вариант №1 13
Вариант №2 13
Вариант №3 14
Вариант №4 14
Вариант №5 15
Вариант №6 15
Вариант №7 16
Вариант №8 16
Вариант №9 17
Вариант №10 17
§ 2. Тождественные преобразования выражений, содержащих степень 18
Вариант №1 18
Вариант №2 19
Вариант №3 19
Вариант №4 20
Вариант №5 21
Вариант №6 21
Вариант №7 22
Вариант №8 23
Вариант №9 23
Вариант №10 24
§ 3. Тождественные преобразования иррациональных выражений 25
Вариант №1 25
Вариант №2 25
Вариант №3 26
Вариант №4 26
Вариант №5 27
Вариант №6 28
Вариант №7 28
Вариант №8 29
Вариант №9 30
Вариант №10 30
§ 4. Системы уравнений 31
Вариант №1 31
Вариант №2 32
Вариант №3 33
Вариант №4 33
Вариант №5 34
Вариант №6 35
Вариант №7 36
Вариант №8 37
Вариант №9 38
Вариант №10 39
§ 5. Геометрический смысл производной 39
Вариант №1 39
Вариант №2 41
Вариант №3 43
Вариант №4 44
Вариант №5 46
Вариант №6 48
Вариант №7 50
Вариант №8 52
Вариант №9 54
Вариант №10 55
§ 6. Неравенства 56
Вариант №1 г 56
Вариант №2 57
Вариант №3 58
Вариант №4 58
Вариант №5 59
Вариант №6 60
Вариант №7 60
Вариант №8 61
Вариант №9 62
Вариант №10 63
§ 7. Иррациональные уравнения 63
Вариант №1 63
Вариант №2 64
Вариант №3 65
Вариант №4 65
Вариант №5 66
Вариант №6 66
Вариант №7 67
Вариант №8 67
Вариант №9 68
Вариант №Ю 68
§ 8. Тригонометрические уравнения 69
Вариант №1 69
Вариант №2 69
Вариант №3 70
Вариант №4 70
Вариант №5 71
Вариант №6 72
Вариант №7 72
Вариант №8 73
Вариант №9 74
Вариант №10 74
§ 9. Логарифмические уравнения 75
Вариант №1 75
Вариант №2 75
Вариант №3 76
Вариант №4 76
Вариант №5 77
Вариант №6 77
Вариант №7 78
Вариант №8 * 78
Вариант №9 79
Вариант №10 79
§ 10. Показательные уравнения 80
Вариант №1 80
Вариант №2 80
Вариант №3 81
Вариант №4 81
Вариант №5 82
Вариант №6 82
Вариант №7 83
Вариант №8 83
Вариант №9 84
Вариант №10 84
§11. Периодичность, чётность и нечётность функций 85
Вариант №1 85
Вариант №2 86
Вариант №3 87
Вариант №4 89
Вариант №5 90
Вариант №6 91
Вариант №7 92
Вариант №8 93
Вариант №9 94
Вариант №10 95
§ 12. Нули сложной функции. Ограниченность функции 97
Вариант №1 97
Вариант №2 97
Вариант №3 98
Вариант №4 98
Вариант №5 99
Вариант №6 99
Вариант №7 100
Вариант №8 100
Вариант №9 101
Вариант №10 101
§ 13. Область определения, множество значений, монотонность функций 102
Вариант №1 102
Вариант №2 102
Вариант №3 103
Вариант №4 103
Вариант №5 104
Вариант №6 104
Вариант №7 105
Вариант №8 105
Вариант №9 106
Вариант №10 107
§ 14. Экстремумы функции. Наибольшее и наименьшее значения функции 107
Вариант №1 107
Вариант №2 108
Вариант №3 108
Вариант №4 109
Вариант №5 109
Вариант №6 110
Вариант №7 110
Вариант №8 111
Вариант №9 111
Вариант №10 112
§ 15. Различные приёмы при решении логарифмических уравнений 113
Вариант №1 113
Вариант №2 113
Вариант №3 114
Вариант №4 114
Вариант №5 115
Вариант №6 115
Вариант №7 116
Вариант №8 116
Вариант №9 117
Вариант №10 117
§ 16. Различные приёмы при решении тригонометрических уравнений 118
Вариант №1 118
Вариант №2 118
Вариант №3 118
Вариант №4 119
Вариант №5 119
Вариант №6 120
Вариант №7 120
Вариант №8 121
Вариант №9 121
Вариант №10 122
§ 17. Различные приёмы при решении иррациональных уравнений 123
Вариант №1 123
Вариант №2 123
Вариант №3 124
Вариант №4 124
Вариант №5 125
Вариант №6 125
Вариант №7 125
Вариант №8 126
Вариант №9 126
Вариант № 10 127
§ 18. Уравнения, содержащие переменную под знаком модуля 127
Вариант №1 127
Вариант №2 128
Вариант №3 128
Вариант №4 129
Вариант №5 129
Вариант №6 130
Вариант №7 130
Вариант №8 131
Вариант №9 131
Вариант №10 131
§ 19. Различные приёмы при решении показательных уравнений.132
Вариант №1 132
Вариант №2 133
Вариант №3 133
Вариант №4 134
Вариант №5 134
Вариант №6 135
Вариант №7 135
Вариант №8 135
Вариант №9 136
Вариант №10 136
§ 20. Различные приёмы при решении комбинированных уравнений 137
Вариант №1 137
Вариант №2 137
Вариант №3 138
Вариант №4 138
Вариант №5 139
Вариант №6 139
Вариант №7 140
Вариант №8 140
Вариант №9 141
Вариант №10 141
§ 21. Уравнения с параметром, содержащие модуль 142
Вариант №1 142
Вариант №2 142
Вариант №3 143
Вариант №4 144
Вариант №5 144
Вариант №6 145
Вариант №7 146
Вариант №8 146
Вариант №9 147
Вариант №10 148
Ответы 149
§ 1. Тождественные преобразования логарифмических выражений 149
§ 2. Тождественные преобразования выражений, содержащих степень 150
§ 3. Тождественные преобразования иррациональных выражений 150
§ 4. Системы уравнений 151
§ 5. Геометрический смысл производной 151
§ 6. Неравенства 152
§ 7. Иррациональные уравнения 152
§ 8. Тригонометрические уравнения 153
§ 9. Логарифмические уравнения 153
§ 10. Показательные уравнения 154
§11. Периодичность, четность и нечетность функций 154
§ 12. Нули сложной функции. Ограниченность функции 155
§ 13. Область определения, множество значений, монотонность функций 156
§ 14. Экстремумы функции. Наибольшее и наименьшее значения функции 158
§ 15. Различные приемы при решении логарифмических уравнений 159
§ 16. Различные приемы при решении тригонометрических уравнений 160
§ 17. Различные приемы при решении иррациональных уравнений 164
§ 18. Уравнения, содержащие переменную под знаком модуля 165
§ 19. Различные приемы при решении показательных уравнений.166
§ 20. Различные приемы при решении комбинированных уравнений 167
§ 21. Уравнения с параметром, содержащие модуль 169
Литература 170

Логарифмические выражения, решение примеров. В этой статье мы рассмотрим задачи связанные с решением логарифмов. В заданиях ставится вопрос о нахождении значения выражения. Нужно отметить, что понятие логарифма используется во многих заданиях и понимать его смысл крайне важно. Что касается ЕГЭ, то логарифм используется при решении уравнений, в прикладных задачах, также в заданиях связанных с исследованием функций.

Приведём примеры для понимания самого смысла логарифма:


Основное логарифмическое тождество:

Свойства логарифмов, которые необходимо всегда помнить:

*Логарифм произведения равен сумме логарифмов сомножителей.

* * *

*Логарифм частного (дроби) равен разности логарифмов сомножителей.

* * *

*Логарифм степени равен произведению показателя степени на логарифм ее основания.

* * *

*Переход к новому основанию

* * *

Ещё свойства:

* * *

Вычисление логарифмов тесно связано с использованием свойств показателей степени.

Перечислим некоторые из них:

Суть данного свойства заключается в том, что при переносе числителя в знаменатель и наоборот, знак показателя степени меняется на противоположный. Например:

Следствие из данного свойства:

* * *

При возведении степени в степень основание остаётся прежним, а показатели перемножаются.

* * *

Как вы убедились само понятие логарифма несложное. Главное то, что необходима хорошая практика, которая даёт определённый навык. Разумеется знание формул обязательно. Если навык в преобразовании элементарных логарифмов не сформирован, то при решении простых заданий можно легко допустить ошибку.

Практикуйтесь, решайте сначала простейшие примеры из курса математики, затем переходите к более сложным. В будущем обязательно покажу, как решаются «страшненькие» логарифмы, таких на ЕГЭ не будет, но они представляют интерес, не пропустите!

На этом всё! Успеха Вам!

С уважением, Александр Крутицких

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.

error: Content is protected !!